Lebanese American University

School of Arts and Sciences
Department of Computer Science and Mathematics

CSC 320 - Computer Organization

Problem Set 6: Arithmetic for Computers

Exercise 1

Overflow occurs when a result is too large to be represented accurately given a finite word size. Underflow occurs when a number is too small to be represented correctly- a negative result when doing unsigned arithmetic, for example. (The case when a positive result is generated by the addition of two negative integers is also referred to as underflow by many, but in this textbook, that is considered an overflow.) The following table shows pairs of decimal numbers.

	A	B
a.	216	255
b.	185	122

1.1 Assume A and B are unsigned 8 -bit decimal integers. Calculate A - B. Is there overflow, underflow, or neither?

Solution:

a.	Underflow(-39)
b.	Neither(63)

1.2 Assume A and B are signed 8-bit decimal integers stored in sign-magnitude format. Calculate A + B. Is there overflow, underflow, or neither?

Solution:
a. Overflow(result $=-215$, which does not fit into an SM 8-bit format)

b. \quad Neither(65)

1.3 Assume A and B are signed 8-bit decimal integers stored in sign-magnitude format. Calculate A - B. Is there overflow, underflow, or neither?

Solution:

a.	Neither (39)
b.	Overflow (result $=-179$, which does not fit into an SM 8-bit format)

1.4 Assume A and B are signed 8-bit decimal integers stored in two's complement format. Calculate A+B using saturating arithmetic. The result should be written in decimal. Show your work.

Solution:

a.	$15-117=-102$
b.	$-105-42=-128(-147)$

1.5 Assume A and B are signed 8-bit decimal integers stored in two's complement format. Calculate A-B using saturating arithmetic. The result should be written in decimal. Show your work.

Solution:
a. $15+117=127(132)$
b. $-105+42=-63$
1.6 Assume A and B are unsigned 8 -bit decimal integers. Calculate $A+B$ using saturating arithmetic. The result should be written in decimal. Show your work.

Solution:

a.	$15+139=154$
b.	$151+214=255(365)$

Exercise 2

In a Von Neumann architecture, groups of bits have no intrinsic meanings by themselves. What a bit pattern represents depends entirely on how it is used. The following table shows bit patterns expressed in hexadecimal notation.

a.	0x0C000000
b.	$0 \times 4 C 4630000$

2.1 What decimal number does the bit pattern represent if it is a floating point number? Use the IEEE 754 standard.

The following table shows decimal numbers.

a.	63.25
b.	146987.40625

Solution:

a.	Ox0C000000 $=00001100000000000000000000000000$ $=000011000000000000000000000000000$ sign is positive exp $=0 \times 18=24-127=-103$ there is a hidden 1 mantissa $=0$ answer $=1.0 \times 2^{-103}$
b.	$0 \times C 4630000=11000100011000110000000000000000$ $=110001000110001100000000000000000$ sign is negative exp $=0 \times 88=136-127=9$ there is a hidden 1 mantissa $=0 \times C 60000=12 \times 16^{-1}+6 \times 16^{-2}$ $=.75+.0234375$ answer $=1.7734375 \times 2^{9}$

2.2 Write down the binary representation of the decimal number, assuming the IEEE 754 single precision format.

Solution:

a.	$63.25 \times 10^{0}=111111.01 \times 2^{0}$ normalize, move binary point 5 to the left 1.1111101×2^{5} sign = positive, exp $=127+5=132$ Final bit pattern: 01000010011111010000000000000000 $=01000010011111010000000000000000=0 \times 427 D 0000$
b.	$146987.40625 \times 10^{0}=100011111000101011.011010 \times 2^{0}$ normalize, move binary point 17 to the left $1.00011111000101011011010 \times 2^{17}$ sign = positive, exp $=127+17=144$ Final bit pattern: 01001000000011111000101011011010 $=01001000000011111000101011011010=0 \times 480 F 8 A D A$

2.3 Write down the binary representation of the decimal number, assuming the IEEE 754 double precision format.

Solution:

a.	$63.25 \times 10^{0}=111111.01 \times 2^{0}$ normalize, move binary point 5 to the left 1.1111101×2^{5} sign = positive, exp $=1023+5=1028$ Final bit pattern: 0100000001001111101000 0000 $=0 \times 404 F A 00000000000$
b.	$146987.40625 \times 10^{0}=100011111000101011.011010 \times 2^{0}$ normalize, move binary point 17 to the left $1.00011111000101011011010 \times 2^{17}$ sign = positive, exp $=1023+17=1040$ Final bit pattern: 010000010000000111110001010110110100000000000000000000000000 0000 $=0 x 4101 F 15 B 40000000$

